The future of coastal upwelling in the Humboldt current from model projections
ثبت نشده
چکیده
The Humboldt coastal upwelling system in the eastern South Pacific ocean is one of the most productive marine ecosystems in the world. A weakening of the upwelling activity could lead to severe ecological impacts. As coastal upwelling in eastern boundary systems is mainly driven by wind stress, most studies so far have analysed wind patterns change through the 20th and 21st Centuries in order to understand and project the phenomenon under specific forcing scenarios. Mixed results have been reported, and analyses from General Circulation Models have suggested even contradictory trends of wind stress for the Humboldt system. In this study, we analyse the ocean upwelling directly in 13 models contributing to phase 5 of the Coupled Model Intercomparison Project (CMIP5) in both the historical simulations and an extreme climate change scenario (RCP8.5). The upwelling is represented by the upward ocean mass flux, a newly-included variable that represents the vertical water transport. Additionally, wind stress, ocean stratification, Ekman layer depth and thermocline depth were also analysed to explore their interactions with coastal upwelling throughout the period studied. The seasonal cycle of coastal upwelling differs between the Northern and Southern Humboldt areas. At lower latitudes, the upwelling season spans most of the autumn, winter and spring. However, in the Southern Humboldt area the upwelling season takes place in spring and the summertime with downwelling activity in winter. This persists throughout the Historical and RCP8.5 simulations. For both the Northern and Southern Humboldt areas an increasing wind stress is projected. However, different trends of upwelling intensity are observed away from the sea surface. Whereas wind stress will continue controlling the decadal variability of coastal upwelling on the whole ocean column analysed (surface to 300 m depth), an increasing disconnect with upwelling intensity is projected below 100 m depth throughout the 21st Century. This relates to an intensification of ocean stratification under global warming as shown by the sea water temperature profiles. Additionally, a divergence between the Ekman layer and thermocline depths is also evidenced. Given the interaction of upwelled nutrients and microscopic organisms essential for fish growth, a potential decline of coastal upwelling at depth could lead to unknown ecological and socio-economical effects.
منابع مشابه
Coastal upwelling in a warmer future
[1] Coastal upwelling helps set the physical context for marine ecosystems, and upwelling zones are among the most productive regions of the global ocean. Unlike earlier models, two state-of-the-art climate models exhibit little change during the next century in the magnitude and seasonality of coastal upwelling, but climate models are still probably not sufficiently developed (for example, the...
متن کاملSpecies distribution modelling of invasive alien species; Pterois miles for current distribution and future suitable habitats
The present study aims to predict the potential geographic distribution and future expansion of invasive alien lionfish (Pterois miles) with ecological niche modelling along the Mediterranean Sea. The primary data consisted of occurrence points of P. miles in the Mediterranean and marine climatic data layers were collected from global databases. All the used models run 100% su...
متن کاملClimate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem.
Climate change has prompted an earlier arrival of spring in numerous ecosystems. It is uncertain whether such changes are occurring in Eastern Boundary Current Upwelling ecosystems, because these regions are subject to natural decadal climate variability, and regional climate models predict seasonal delays in upwelling. To answer this question, the phenology of 43 species of larval fishes was i...
متن کاملReductions in midlatitude upwelling-favorable winds implied by weaker large-scale Pliocene SST gradients
The early-to-mid Pliocene (3–5.3 Ma) is the most recent geologic period of significant global warmth. Proxy records of Pliocene sea surface temperature (SST) indicate significant and still unexplained warm anomalies of 3∘C–9∘C in midlatitude eastern boundary currents, where present-day cool temperatures are maintained by wind-driven upwelling. Here we quantify the effect of large-scale Pliocene...
متن کاملMicrobial biogeochemistry of coastal upwelling regimes in a changing ocean
711 The coastal upwelling regimes located along the eastern boundaries of the Pacific and Atlantic Ocean basins are small in size, but make a disproportionate contribution to the productivity and microbial biogeochemistry of the ocean. These regimes include the California and Peru/Humboldt current systems in the Pacific, and the Canary and Benguela current systems in the Atlantic. Their charact...
متن کامل